How do you solve sin(3x) + sin^2 (x)= 2sin(3x)+sin2(x)=2?

1 Answer
Oct 17, 2015

Solve sin 3x + sin^2 x = 2

Ans: x = (3pi)/2x=3π2

Explanation:

sin 3x + sin^2 x = 2sin3x+sin2x=2
Trig identity --> sin (3x) = 3sin x - 4sin^3 x.sin(3x)=3sinx4sin3x. Call sin x = t, we get
3t - 4t^3 + t^2 = 23t4t3+t2=2
f(t) = 4t^3 - t^2 - 3t + 2 = 0f(t)=4t3t23t+2=0
Since (a - b + c - d = 0), one factor is (t + 1). By division, we get:
f(t) = (t + 1)(4t^2 - 5t + 2) = 0f(t)=(t+1)(4t25t+2)=0. Solve this product.

a. t = sin x = - 1 --> x = (3pi)/2 x=3π2
b. (4t^2 - 5t + 2) = 0(4t25t+2)=0
D = b^2 - 4ac = 25 - 32 < 0.D=b24ac=2532<0. There are no real roots.
Therefor, there is unique answer: x = (3pi)/2x=3π2
Check.
x = (3pi)/2x=3π2 --> sin 3x = sin ((9pi)/2) = sin (pi/2) = 1 sin3x=sin(9π2)=sin(π2)=1--> sin^2 x = 1.
sin 3x + sin^2 x = 1 + 1 = 2. OK