How do you solve Sin (4 theta)= cos(2theta)?

1 Answer
May 2, 2016

theta=(2n+1)pi/4 or

theta=npi/2+(-1)^npi/12

Explanation:

sin(4theta)=cos(2theta)

or 2sin(2theta)cos(2theta)-cos(2theta)=0

or cos(2theta){2sin(2theta)-1}=0

i.e. either cos(2theta)=0 or 2sin(2theta)-1=0

If cos(2theta)=0, 2theta=(2n+1)pi/2 or theta=(2n+1)pi/4

and if 2sin(2theta)-1=0, we have sin(2theta)=1/2

and 2theta=npi+(-1)^npi/6 or theta=npi/2+(-1)^npi/12