How do you solve sin^4x+2sin^2x-3=0sin4x+2sin2x3=0 for 0<=x<=2pi0x2π?

1 Answer
Aug 16, 2016

x = pi/2, (3pi)/2x=π2,3π2

Explanation:

This can be factored as (x^2 + a)(x^2 + b)(x2+a)(x2+b).

=>(sin^2x + 3)(sin^2x - 1) = 0(sin2x+3)(sin2x1)=0

=>sin^2x = -3 and sin^2x = 1sin2x=3andsin2x=1

=> sinx = sqrt(-3) and sinx = sqrt(1)sinx=3andsinx=1

=> sinx = O/ and sinx = +-1sinx=andsinx=±1

=> x = pi/2, (3pi)/2x=π2,3π2

Hopefully this helps!