How do you solve sin(x/2) + cosx =0sin(x2)+cosx=0 in the interval [0, 2pi]?

1 Answer

We know that

cosx=1-2sin^2(x/2)cosx=12sin2(x2)

Hence

sin(x/2)+cos(x)=0=>sin(x/2)+1-2sin^2(x/2)=0=> 2sin^2(x/2)-sin(x/2)-1=0sin(x2)+cos(x)=0sin(x2)+12sin2(x2)=02sin2(x2)sin(x2)1=0

Set u=sin(x/2)u=sin(x2) so we have

2u^2-u-1=0=>u^2-u+u^2-1=0=>u(u-1)+(u-1)(u+1)=0=> (u-1)(2u+1)=02u2u1=0u2u+u21=0u(u1)+(u1)(u+1)=0(u1)(2u+1)=0

For u=1u=1 we get sin(x/2)=1=>x/2=2kpi+pi/2=>x=4kpi+pisin(x2)=1x2=2kπ+π2x=4kπ+π

where kk integer.

And for u=-1/2u=12 we get sin(x/2)=-1/2=>x/2=2kpi-pi/6=>x=4kpi-pi/3 or x=4kpi+7pi/3sin(x2)=12x2=2kππ6x=4kππ3orx=4kπ+7π3

But since our solutions belong to [0,2pi][0,2π] the acceptable values are

x=pix=π