How do you solve sin (x/2) + cosx=1?

1 Answer
May 14, 2016

0, 2pi, pi/3, and (5pi)/3

Explanation:

Apply the trig identity: cos x = 1 - 2sin^2 (x/2)
sin (x/2) + 1 - 2sin^2 (x/2) - 1 = 0
sin (x/2) - 2sin^2 (x/2) = sin (x/2)(1 - 2sin (x/2)) = 0
a. sin (x/2) = 0 --> 3 solutions -->
x/2 = 0 --> x = 0
x/2 = pi -->x = 2pi
x/2 = 2pi --> x = 4pi
b. sin (x/2) = 1/2 --> 2 solutions -->
x/2 = pi/6 --> x = (2pi)/6 = pi/3
x/2 = pi - pi/6 = (5pi)/6 --> x = (5pi)/3