How do you solve sin x + 2sin x cos x = 0?

1 Answer
Oct 21, 2015

x in {color(red)(npi), color(blue)((2pi)/3+n(2pi)), color(green)((4pi)/3+n(2pi))} AA n in ZZ

Explanation:

sin(x)+2sin(x)cos(x) = 0

Factoring the left side:
(sin(x))*(1+2cos(x))=0

Either color(red)(sin(x) = 0) or color(orange)(1+2cos(x)=0)

If color(red)(sin(x)=0)
rarr x in {color(red)(npi)} AA n in ZZ
(i.e. x is a multiple of pi radians)

If color(orange)(1+2cos(x)=0)
rarr cos(x) = -1/2
withing the interval [0,2pi]
x= color(blue)((2pi)/3) or color(green)(x=(4pi)/3)
or, more generally:
x= color(blue)((2pi)/3+n*2pi) or color(green)(x=(4pi)/3+n*2pi) AAn in ZZ