How do you solve sin (x + (π/4)) + sin (x - (π/4)) = 1?

1 Answer
Jul 22, 2015

x=(-1)^n(pi/4)+npi" ", n in ZZ

Explanation:

We use the identity(otherwise called the Factor Formula) :

sinA +sinB=2sin((A+B)/2)cos((A-B)/2)

Like this :

sin (x + (pi/4)) + sin (x - (pi/4)) = 2sin[((x+pi/4)+(x-pi/4))/2]cos[(x+pi/4-+(x-pi/4))/2]= 1

=>2sin((2x)/2)cos((2*(pi/4))/2)=1

=>2sin(x)cos(pi/4)=1

=>2*sin(x)*sqrt(2)/2=1

=>sin(x)=1/sqrt(2)=sqrt(2)/2

=>color(blue)(x=pi/4)

The General Solution is : x= pi/4 + 2pik and x=pi-pi/4 +2pik=pi/4 + (2k+1)pi" ",k in ZZ

You can combine the two sets of solution into one as follows :

color(blue)(x=(-1)^n(pi/4)+npi)" ",n in ZZ