How do you solve sin(x) = cos(x)?

2 Answers
Mar 18, 2016

pi/4

Explanation:

sin x = cos (pi/2 - x) --> complementary arcs
Therefor,
cos (pi/2 - x) = cos x
(pi/2 - x) = +- x
a. pi/2 - x = x --> 2x = pi/2 --> x = pi/4
b. pi/2 - x = - x (undetermined)
Answer: x = pi/4
Check.
x = pi/4 --> sin x = cos x = sqrt2/2. OK

Mar 18, 2016

General solution of sinx=cosx is x=npi+pi/4, where n is an integer.

Explanation:

Dividing the equation sinx=cosx, by sinx on both sides

sinx/cosx=1 or

tanx=1=tan(pi/4)

Hence, general solution of sinx=cosx is x=npi+pi/4, where n is an integer.