How do you solve Sin x - cos x = 1/3?

1 Answer
Jun 30, 2016

58^@63 and 211^@37

Explanation:

Call t the arc that tan t = sin t/(cos t) = 1. --> t = 45^@.
The equation can be written as:
sin x - (sin t/(cos t))cos x = 1/3
sin x.cos t - sin t.cos x = (cos t)/3 = (cos 45)/3 = sqrt2/6
sin (x - t) = sin (x - 45) = sqrt2/6 = 0.235.
There are 2 solutions. On the unit circle, 0.235 is the same value of both sin (13^@63) and sin (180 - 13.63) = sin 166^@37
a. (x - 45) = 13^@63.
x = 13.63 + 45 = 58^@63
b. (x - 45) = 180 - 13.63 = 166^@37
x = 166.37 + 45 = 211^@37
Answers for (0, 360):
58^@63 and 211^@37