How do you solve sin(x) - cos(x) -tan(x)= -1?

2 Answers
May 24, 2018

"The Solution Set"={2kpi}uu{kpi+pi/4}, k in ZZ.

Explanation:

Given that, sinx-cosx-tanx=-1.

:. sinx-cosx-sinx/cosx+1=0.

:. (sinx-cosx)-(sinx/cosx-1)=0.

:. (sinx-cosx)-(sinx-cosx)/cosx=0.

:. (sinx-cosx)cosx-(sinx-cosx)=0.

:. (sinx-cosx)(cosx-1)=0.

:. sinx=cosx or cosx=1.

" Case 1 : "sinx=cosx.

Observe that cosx!=0, because," if otherwise; "tanx" becomes"

undefined.

Hence, dividing by cosx!=0, sinx/cosx=1, or, tanx=1.

:. tanx=tan(pi/4).

:. x=kpi+pi/4, k in ZZ," in this case".

" Case 2 : "cosx=1.

"In this case, "cosx=1=cos0, :. x=2kpi+-0, k in ZZ.

Altogether, we have,

"The Solution Set"={2kpi}uu{kpi+pi/4}, k in ZZ.

May 24, 2018

rarrx=2npi,npi+pi/4 where n in ZZ

Explanation:

rarrsinx-cosx-tanx=-1

rarrsinx-cosx-sinx/cosx+1=0

rarr(sinx*cosx-cos^2x-sinx+cosx)/cosx=0

rarrsinx*cosx-sinx-cos^2x+cosx=0

rarrsinx(cosx-1)-cosx(cosx-1)=0

rarr(cosx-1)(sinx-cosx)=0

When rarrcosx-1=0

rarrcosx=cos0

rarrx=2npi+-0=2npi where n in ZZ

When rarrsinx-cosx=0

rarrcos(90-x)-cosx=0

rarr2sin((90-x+x)/2)*sin((x-90+x)/2)=0

rarrsin(x-pi/4)=0 As sin(pi/4)!=0

rarrx-pi/4=npi

rarrx=npi+pi/4 where n in ZZ