How do you solve sin(x+pi/4)+sin(x-pi/4)=1sin(x+π4)+sin(xπ4)=1 over the interval (0,2pi)(0,2π)?

1 Answer
Apr 17, 2015

Use the trig identity: color(blue)(sin (a + b) + sin (a - b) = 2sin a*cos b)sin(a+b)+sin(ab)=2sinacosb

f(x) = 2*sin x*cos (pi/4) - 1 = 0f(x)=2sinxcos(π4)1=0 ,

since color(blue)(cos (pi/4) = (sqrt2)/2cos(π4)=22

f(x) = (sqrt2*sin x) - 1 = 0f(x)=(2sinx)1=0

sin x = 1/sqrt2 = (sqrt2)/2 --> sinx=12=22

color(red)(x = pi/4 and 3pi/4x=π4and3π4 (inside interval 0 - 2pi02π)

Check:
x = pi/4 --> x + pi/4 = pi/2 --> sin (x + pi/4) = 1; cos (x + pi/4) = 0 --> f(x) = 1 - 1 = 0x=π4x+π4=π2sin(x+π4)=1;cos(x+π4)=0f(x)=11=0. Correct.
x = 3pi/4 --> (x + pi/4) = pi --> sin pi = 0; cos pi = -1 --> f(x) = 1 - 1 = 0.x=3π4(x+π4)=πsinπ=0;cosπ=1f(x)=11=0. Correct