How do you solve Sin x + Sin 2x + Sin 3x + Sin 4x = 0sinx+sin2x+sin3x+sin4x=0?

2 Answers
May 10, 2015

In this way, using the sum-to-product formula for sinus and cosine:

sinalpha+sinbeta=2sin((alpha+beta)/2)cos((alpha-beta)/2)sinα+sinβ=2sin(α+β2)cos(αβ2)

cosalpha+cosbeta=2cos((alpha+beta)/2)cos((alpha-beta)/2)cosα+cosβ=2cos(α+β2)cos(αβ2).

So:

(sin4x+sinx)+(sin3x+sin2x)=0rArr(sin4x+sinx)+(sin3x+sin2x)=0

2sin((4x+x)/2)cos((4x-x)/2)+2sin(4x+x2)cos(4xx2)+

+2sin((3x+2x)/2)cos((3x-2x)/2)=0+2sin(3x+2x2)cos(3x2x2)=0

2sin(5/2x)cos(3/2x)+2sin(5/2x)cos(1/2x)=02sin(52x)cos(32x)+2sin(52x)cos(12x)=0

2sin(5/2x)[cos(3/2x)+cos(1/2x)]=02sin(52x)[cos(32x)+cos(12x)]=0

2sin(5/2x)2cos((3/2x+1/2x)/2)cos((3/2x-1/2x)/2)=02sin(52x)2cos(32x+12x2)cos(32x12x2)=0

4sin(5/2x)cosxcos(x/2)=04sin(52x)cosxcos(x2)=0.

Then:

sin(5/2x)=0rArr5/2x=kpirArrx=2/5kpisin(52x)=052x=kπx=25kπ,

cosx=0rArrx=pi/2+kpicosx=0x=π2+kπ,

cos(x/2)=0rArrx/2=pi/2+kpirArrx=pi+2kpicos(x2)=0x2=π2+kπx=π+2kπ.

May 23, 2015

Reminder of Concept to solve trig equations:
To solve a complex trig equation, transform it into a few basic trig equations. Solving trig equations finally results in solving basic trig equations.
In this example of solving: f(x) = sin x + sin 2x + sin 3x + sin 4x = 0, use the trig identity of "sin a + sin b" to transform f(x) into a product of 3 basic trig equations like Massimiliano finely did:
f(x) =4cos x.sin (5x/2).cos (x/2) = 0f(x)=4cosx.sin(5x2).cos(x2)=0.
Next, solve separately the 3 basic trig equations: cos x = 0, sin (5x/2) = 0, and cos (x/2) = 0(5x2)=0,andcos(x2)=0