How do you solve sin2x = √2 cosx, 0≤x≤ π?

sin2x = sqrt(2)2 cosx, 0<=x<=piπ?

1 Answer
Mar 24, 2017

pi/2; pi/4; (3pi)/4π2;π4;3π4

Explanation:

Use trig identity : sin 2x = 2sin x.cos x
Substitute in the equation sin 2x by 2sin x.cos x
2sin x.cos x - sqrt2cos x = 02sinx.cosx2cosx=0
cos x(2sin x - sqrt2) = 0cosx(2sinx2)=0
Either one of the 2 factors should be zero:
a. cos x = 0 --> x = pi/2x=π2, and x = (3pi)/2x=3π2
b. 2sin x - sqrt2 = 02sinx2=0
sin x = sqrt2/2sinx=22
Trig unit circle gives 2 solutions:
x = pi/4 and x = (3pi)/4x=π4andx=3π4
Answers for (0, pi)(0,π)
pi/2; pi/4; (3pi)/4π2;π4;3π4