How do you solve sin2x+sinx+2cosx+1=0 in the interval [0,360]?

1 Answer
Aug 22, 2016

120^@,240^@, 270^@

Explanation:

Use trig identity:
sin 2x = 2sin x.cos x.
Replace in the equation sin 2x by 2sin x.cos x:
2sin x.cos x + sin x + 2cos x + 1 = 0
Proceed factoring by grouping:
sin x(2cos x + 1) + 2cos x + 1 = 0
(2cos x + 1)(sin x + 1) = 0
a. 2cos x + 1 = 0 --> cos x = -1/2
Trig table and unit circle -->
cos x = -1/2 --> x = +- 120^@
Arc - 120^@ is co-terminal to arc 240^@
b. sin x + 1 = 0 --> sin x = -1
sin x = - 1 --> x = 270^@
Answers for (0, 360):
120^@; 240^@, 270^@