How do you solve sin2xcosx-sinx=0 in the interval [0,360]?

2 Answers
Aug 31, 2016

Apply the identity sin2x = 2sinxcosx.

2sinxcosxcosx - sinx = 0

2sinxcos^2x - sinx = 0

sinx(2cos^2x - 1) = 0

sinx = 0 and cosx = +-1/sqrt(2)

x = 0˚, 180˚, 45˚, 135˚, 225˚, 315˚

Hopefully this helps!

Sep 4, 2016

x = 0^(circ), 45^(circ), 135^(circ), 180^(circ), 225^(circ), 315^(circ)

Explanation:

We have: sin(2x) cos(x) - sin(x) = 0; [0^(circ),360^(circ)]

Let's begin by applying the double-angle identity for sin(x):

=> 2 sin(x) cos(x) cdot cos(x) - sin(x) = 0

=> 2 sin(x) cos^(2)(x) - sin(x) = 0

=> sin(x)(2cos^(2)(x) - 1) = 0

=> sin(x) = 0 => x = 0^(circ)

or

=> cos(x) = pm (sqrt(2)) / (2) => x = 45^(circ), 135^(circ), 180^(circ), 225^(circ), 315^(circ)

=> x = 0^(circ), 45^(circ), 135^(circ), 180^(circ), 225^(circ), 315^(circ)