How do you solve sin4x+2sin2x=0sin4x+2sin2x=0?

1 Answer
Dec 22, 2016

{0 + 2pin, pi/2 + 2pin, pi + 2pin, (3pi)/2 + 2pin}{0+2πn,π2+2πn,π+2πn,3π2+2πn}

Explanation:

Expand using sin(A + B) = sinAcosB + cosAsinBsin(A+B)=sinAcosB+cosAsinB:

sin(2x + 2x) + 2sin2x= 0sin(2x+2x)+2sin2x=0

sin2xcos2x + sin2xcos2x + 2sin2x = 0sin2xcos2x+sin2xcos2x+2sin2x=0

2sin2xcos2x + 2sin2x = 02sin2xcos2x+2sin2x=0

2sin2x(cos2x + 1) = 02sin2x(cos2x+1)=0

Case 1: 2sin2x= 02sin2x=0

Use sin2theta = 2sinthetacosthetasin2θ=2sinθcosθ:

2(2sinxcosx) = 02(2sinxcosx)=0

4sinxcosx= 04sinxcosx=0

Whenever sinx = 0sinx=0 and whenever cosx = 0cosx=0, the entire equation will equal 00. So, x = 0 + 2pinx=0+2πn, pi/2 + 2pinπ2+2πn, pi + 2pinπ+2πn, (3pi)/2 + 2pin#.

Case 2: cos2x + 1 = 0cos2x+1=0

Use the identity cos2x = 2cos^2x - 1cos2x=2cos2x1.

2cos^2x - 1 + 1 = 02cos2x1+1=0

2cos^2x = 02cos2x=0

cos^2x= 0cos2x=0

cosx =0cosx=0

x = pi/2 + 2pinx=π2+2πn and (3pi)/2 + 2pin3π2+2πn

Hopefully this helps!