How do you solve sin4x+2sin2x=0sin4x+2sin2x=0?
1 Answer
Explanation:
Expand using
sin(2x + 2x) + 2sin2x= 0sin(2x+2x)+2sin2x=0
sin2xcos2x + sin2xcos2x + 2sin2x = 0sin2xcos2x+sin2xcos2x+2sin2x=0
2sin2xcos2x + 2sin2x = 02sin2xcos2x+2sin2x=0
2sin2x(cos2x + 1) = 02sin2x(cos2x+1)=0
Case 1:
Use
2(2sinxcosx) = 02(2sinxcosx)=0
4sinxcosx= 04sinxcosx=0
Whenever
Case 2:
Use the identity
2cos^2x - 1 + 1 = 02cos2x−1+1=0
2cos^2x = 02cos2x=0
cos^2x= 0cos2x=0
cosx =0cosx=0
x = pi/2 + 2pinx=π2+2πn and(3pi)/2 + 2pin3π2+2πn
Hopefully this helps!