How do you solve sinx=-cosx in the interval 0<=x<=2pi?

1 Answer
Mar 7, 2018

x=(3pi)/4 or (7pi)/4

Explanation:

As sinx=-cosx, we have

sinx+cosx=0

or sinx/sqrt2+cosx/sqrt2=0

or sinxcos(pi/4)+cosxsin(pi/4)=0

or sin(x+pi/4)=0=sin0#

or sin(x+pi/4)=sin0 or sinpi or sin2pi

Hence possible values of x in the interval 0<=x<=2pi is

x=pi-pi/4=(3pi)/4 or x=2pi-pi/4=(7pi)/4

Alternatively sinx=-cosx=>tanx=-1

i.e. x=(3pi)/4 or (7pi)/4

An easier way could be that as sinx=-cosx

sinx/cosx=-1 or tanx=tan(-pi/4)

and as tan ratio has a cylce of pi

x={-pi/4,(3pi)/4,(7pi)/4,......} and possible values of x in the interval 0<=x<=2pi are (3pi)/4 and (7pi)/4.