How do you solve (sinx+cosx)/tanx+(1-sinx)/sinx=cosx for 0<=x<=2pi?

1 Answer
Feb 6, 2017

{}; no solution

Explanation:

Rewrite tanx as sinx/cosx:

(sinx + cosx)/(sinx/cosx) + (1 - sinx)/sinx = cosx

(cosx(sinx + cosx))/sinx + (1 - sinx)/sinx = cosx

(cosxsinx + cos^2x + 1 - sinx)/sinx = cosx

cosxsinx + cos^2x + 1 - sinx = sinxcosx

cos^2x + 1 - sinx = sinxcosx- sinxcosx

cos^2x+ 1 - sinx = 0

Use sin^2x + cos^2x = 1:

1 - sin^2x + 1 - sinx = 0

0 =sin^2x + sinx - 2

Factor:

0 = (sinx + 2)(sinx - 1)

sinx = -2 and 1

There is no solution to sinx = -2. However, sinx = 1 is solvable.

x = pi/2

However, this is extraneous, since tan(pi/2) is not defined in the real number system, aka:

tan(pi/2) = sin(pi/2)/cos(pi/2) = 1/0 = "undefined"

Therefore, this equation has no solution. This can be symbolized with an empty solution set {}.

Hopefully this helps!