How do you solve -sqrt(3)cos x + sin x = -sqrt(3) ?

2 Answers

x=2n\pi\pm\pi/6-\pi/6

Explanation:

Given that

-\sqrt3\cos x+\sin x=-\sqrt3

\sqrt3\cos x-\sin x=\sqrt3

(\sqrt3/2)\cos x-(1/2)\sin x=\sqrt3/2

\cos x\cos(\pi/6)-\sin x\sin(\pi/6)=\cos(\pi/6)

\cos (x+\pi/6)=\cos(\pi/6)

(x+\pi/6)=2n\pi\pm\pi/6

x=2n\pi\pm\pi/6-\pi/6

Where, n is any integer i.e. n=0, \pm1, \pm2, \pm3, \ldots

Jul 9, 2018

x = 2 pi n " and "x = 2 pi n + (5 pi)/3

Explanation:

Given: -sqrt(3) cos x + sin x = - sqrt(3)

Rearrange: " "sqrt(3) - sqrt(3) cos x + sin x = 0

When we think of sqrt(3) in terms of cosine, realize cos(pi/6) = sqrt(3)/2

Group the second two terms and multiply and divide both terms by 2/2:

sqrt(3) - 2((sqrt(3))/2 cos x - 1/2sin x) = 0

Substitute in cos (pi/6) " for " sqrt(3)/2 " and " sin (pi/6) " for " 1/2:

sqrt(3) - 2(cos (pi/6) cos x - sin (pi/6) * sin x) = 0

Realize that " "cos(x + pi/6) = cos (pi/6) cos x - sin (pi/6) * sin x

sqrt(3) - 2cos(x + pi/6) = 0

- 2cos(x + pi/6) = -sqrt(3)

cos(x + pi/6) = sqrt(3)/2

Take the inverse cosine of both sides:

cos^-1(cos(x + pi/6)) = cos^-1(sqrt(3)/2)

x + pi/6 = 2 pi n + pi/6

and x + pi/6 = 2 pi n + (11 pi)/6

Simplify:

x = 2 pi n " and " x = 2 pi n +(10 pi/6) = 2 pi n + (5 pi)/3