How do you solve sqrt(3)sin2x+cos2x=0 for 0 to 2pi?

1 Answer
Jun 15, 2015

Solve sqrt3.sin 2x + cos 2x = 0

Explanation:

sin 2x + (1/sqrt3)cos 2x = 0.

Replace tan (pi/6) = (1/sqrt3) by (sin (pi/6)/cos (pi/6))

sin 2x.cos (pi/6) + sin (pi/6).cos 2x = 0

sin (2x + pi/6) = 0

a. (2x + pi/6) = 0 -> 2x = - pi/6 -> x = - pi/12

b. (2x + pi/6) = pi -> 2x = pi - pi/6 = (5pi)/6 ->

-> x = 5pi/12