How do you solve tan^2(3x)=3 and find all exact general solutions?

1 Answer
Jul 26, 2016

x = pi/9 + (kpi)/3
x = (2pi)/9 + (kpi)/3

Explanation:

tan^2 (3x) = 3
tan (3x) = +- sqrt3
There are 2 solutions. Use trig table and unit circle

a. tan (3x) = sqrt3 = tan (pi/3)
3x = (pi/3) + kpi
x = (pi/9) + (kpi)/3

b. tan (3x) = -sqrt3 = tan (2pi)/3
3x = (2pi)/3 + kpi
x = (2pi)/9 + (kpi)/3
Check by calculator:
x = (pi/9) = 20^@ --> 3x = 60^@ --> tan 3x = sqrt3 -->
tan^2 3x = 3 . OK
x = (2pi)/9 = 40^@ --> 3x = 120^@ --> tan 3x = tan 120 = - sqrt3 --> tan^2 3x = 3 . OK