How do you solve tan(2u) = tan(u) on the interval [0,2pi)?

1 Answer
Jun 23, 2016

u={0,pi}

Explanation:

As tan2u=(2tanu)/(1-tan^2u), tan2u=tanu can be written as

(2tanu)/(1-tan^2u)=tanu

or 2tanu=tanu(1-tan^2u)=tanu-tan^3u

or tan^3u+2tanu-tanu=0

or tan^3u+tanu=0

or tanu(tan^2u+1)=0

As (tan^2u+1) is always positive and non-zero

tanu=0 and u={0,pi}