Here,
tan^2x=1/3=(1/sqrt3)^2, where, 0 <= x <= 2pitan2x=13=(1√3)2,where,0≤x≤2π
=>tanx=+-1/sqrt3⇒tanx=±1√3
Now,
(i) tanx=1/sqrt3 > 0=>I^(st)Quadrant or III^(rd)Quadrant(i)tanx=1√3>0⇒IstQuadrantorIIIrdQuadrant
:.x=pi/6to I^(st)Quadrant or
x=pi+pi/6=(7pi)/6toIII^(rd) Quadrant
(ii)tanx=-1/sqrt3 < 0=>II^(nd)Quadrant or IV^(th)Quadrant
:.x=pi-pi/6=(5pi)/6toII^(nd)Quadrant or
x=2pi-pi/6=(11pi)/6to IV^(th)Quadrant
Hence,
x=pi/6,(5pi)/6,(7pi)/6and(11pi)/6