How do you solve tan^2x=1/3tan2x=13 in the interval 0<=x<=2pi0x2π?

1 Answer
Apr 26, 2018

x=pi/6,(5pi)/6,(7pi)/6and(11pi)/6,where,x in [0,2pi)x=π6,5π6,7π6and11π6,where,x[0,2π)

Explanation:

Here,

tan^2x=1/3=(1/sqrt3)^2, where, 0 <= x <= 2pitan2x=13=(13)2,where,0x2π

=>tanx=+-1/sqrt3tanx=±13

Now,

(i) tanx=1/sqrt3 > 0=>I^(st)Quadrant or III^(rd)Quadrant(i)tanx=13>0IstQuadrantorIIIrdQuadrant

:.x=pi/6to I^(st)Quadrant or

x=pi+pi/6=(7pi)/6toIII^(rd) Quadrant

(ii)tanx=-1/sqrt3 < 0=>II^(nd)Quadrant or IV^(th)Quadrant

:.x=pi-pi/6=(5pi)/6toII^(nd)Quadrant or

x=2pi-pi/6=(11pi)/6to IV^(th)Quadrant

Hence,

x=pi/6,(5pi)/6,(7pi)/6and(11pi)/6