How do you solve tan^2x=1-secx for 0<=x<=2pi?

1 Answer
Sep 12, 2016

0, (2pi)/3, (4pi)/3, 2pi

Explanation:

tan^2 x + sec x - 1 = 0
sin^2 x/(cos^2 x) + 1/(cos x) - 1 = 0
(sin^2 x + cos x - cos^2 x)/(cos^2 x) = 0
sin^2 x - cos^2 x + cos x = 0. (condition: cos x different to 0)
Replace sin^2 x by (1 - cos^2 x), we get
(1 - cos^2 x) - cos^2 x + cos x = 0
- 2cos^2 x + cos x + 1 = 0
Solve this quadratic equation for cos x.
Since a + b + c = 0, use shortcut. The 2 real roots are:
cos x = 1 and cos x = c/a = - 1/2
a. When cos x = 1 --> x = 0 and x = 2pi
b. When cos x = - 1/2 --> x = +- (2pi)/3
arc (4pi)/3 is co-terminal to arc (-2pi)/3.
Answers for (0, 2pi)
0, (2pi)/3, (4pi)/3, 2pi