Call x/2 = t . Apply the identity: sin 2a = 2sin a.cos a
(sin t)/(cos t) - 2sin t.cos t = 0.
(sin t)/(cos t) - (2sin t.cos t) = 0
sin t(1 - 2cos^2 t) = 0
a. sin t = sin (x/2) = 0 --> x/2 = 0, x/2 = pi and x/2 = 2pi -->
x = 0 and x = 2pi
b. 1 - 2cos^2 t = 0 --> cos^2 t = 1/2 -->
cos t = cos (x/2) = +-sqrt2/2
cos t = cos (x/2) = sqrt2/2 --> x/2 = +- pi/4 --> x = +-pi/2
cos t = cos (x/2) = -sqrt2/2 --> x/2 = +-(3pi)/4 --> x = +-3pi/2
Answers for (0, 2pi)
0, pi/4, pi/2, (3pi)/4, (5pi)/4, (3pi)/2, (7pi)/4, 2pi.
Note.
- pi/4 --> (7pi)/4 (co-terminal)
-(3pi)/4 --> (5pi)/4 (co-terminal)