How do you solve tan x + sec x = 2?

2 Answers
Dec 8, 2016

Given equation

secx+tanx=2........[1]

Again we know

sec^2x-tan^2x=1.......[2]

Dividing [2] by [1]

secx-tanx=1/2.......[3]

Adding [1] and [3] we get

2secx=2+1/2=5/2

=>secx=5/4

=>cosx=4/5=cosalpha,where alpha=cos^-1(4/5)

So x=2npi±alpha" where "n in ZZ

Again subtracting [3] from [1] we get a solution in another form

2tanx=3/2

tanx=3/4=tanbeta,where beta=tan^-1(3/4)

So x=npi+beta" where "n in ZZ

Alternatve

Given equation

secx+tanx=2

=>1/cosx+sinx/cosx=2

=>(sqrt(1+sinx))^2/sqrt((1+sinx)(1-sinx))=2
[1+sinx!=0]

=>(sqrt(1+sinx))/sqrt(1-sinx)=2

=>(1+sinx)/(1-sinx)=4

=>(1+sinx)=4(1-sinx)

=>5sinx=3=>sinx=3/5=sinsin^-1(3/5)

=>x=npi+(-1)^nsin^-1(3/5)

Dec 8, 2016

x = arcsin(3/5) + 2pin.

Explanation:

Here's another way of solving this problem.

We know that tantheta = sintheta/costheta and sectheta = 1/costheta. So,

sinx/cosx + 1/cosx= 2

(sinx + 1)/cosx= 2

sinx + 1 = 2cosx

Square both sides.

(sinx + 1)^2 = (2cosx)^2

sin^2x+ 2sinx + 1 = 4cos^2x

We use the identity sin^2theta + cos^2theta = 1-> cos^2theta = 1 - sin^2theta.

sin^2x + 2sinx + 1 = 4(1 - sin^2x)

sin^2x+ 2sinx + 1 = 4 - 4sin^2x

5sin^2x + 2sinx - 3 = 0

We let t = sinx.

5t^2 + 2t - 3 = 0

5t^2 + 5t - 3t - 3 = 0

5t(t + 1) - 3(t + 1) = 0

(5t - 3)(t + 1)= 0

t = 3/5 and -1

sinx = 3/5 and sinx = -1

x = pi - arcsin(3/5) + 2pin, arcsin(3/5) + 2pin, (3pi)/2 + 2pin

However, pi - arcsin(3/5) + 2pin and (3pi)/2 + 2pin extraneous. pi - arcsin(3/5) since tangent is negative in quadrant II and so is cosine. (3pi)/2 is extraneous since it is an asymptote in the secant function and in the tangent function.

Therefore, the only actual solution is x = arcsin(3/5) + 2pin, where n is an integer.

Hopefully this helps!