How do you solve tan2x cotx - 3 = 0tan2xcotx3=0?

1 Answer
Jun 27, 2015

Solve: tan 2x.cot x - 3 = 0

Explanation:

Call t = tan x, we get

(2t)/(1 - t^2)(1/t) - 3 =2t1t2(1t)3= (2t)/(t(1 - t^2)) - ((3t)(1 - t^2))/(t(1 - t^2))2tt(1t2)(3t)(1t2)t(1t2) =

(-t + 3t^3)/(t(1 - t^2)) = (3t^2 - 1)/(1 - t^2) = 0t+3t3t(1t2)=3t211t2=0

Conditions: t different to 0, and different to +- 1±1

(3t^2 - 1) = 0 --> t^2 = 1/3 -> t = tan x = +- sqrt3/3(3t21)=0t2=13t=tanx=±33

t = tan x = (sqrt3)/3 -> x = pi/6t=tanx=33x=π6

t = tan x = -sqrt3/3 --> x = (5pi)/6t=tanx=33x=5π6

Check with x = (5pi)/6x=5π6
tan 2x = tan ((10pi)/6) = tan ((5pi)/3) = - tan (pi/3) = - sqrt3tan2x=tan(10π6)=tan(5π3)=tan(π3)=3
cot x = cot ((5pi)/6) = - sqrt3cotx=cot(5π6)=3
f(x) = (-sqrt3)(-sqrt3) - 3 = 0f(x)=(3)(3)3=0. OK