How do you solve tan3x(tanx-1)=0tan3x(tanx1)=0?

1 Answer
May 23, 2016

x=(npi)/3x=nπ3 or x=npi+pi/4x=nπ+π4, where nn is an integer.

Explanation:

As tan3x(tanx-1)=0tan3x(tanx1)=0

We have either tan3x=0tan3x=0, which gives us

3x=npi3x=nπ, where nn is an integer i.e. x=(npi)/3x=nπ3

or tanx-1=0tanx1=0 i.e. tanx=tanpi/4tanx=tanπ4 which gives us

x=npi+pi/4x=nπ+π4