How do you solve (tanx+1)^2=sec^2x-3?

2 Answers
Oct 11, 2016

x=arctan(-3/2)+kpi

Explanation:

Since color(red)(tanx=sinx/cosx) and color(green)(secx=1/cosx), you have:

(color(red)(sinx/cosx)+1)^2=(color(green)(1/cosx))^2-3

((sinx+cosx)/cosx)^2=(1-3cos^2x)/cos^2x

(color(blue)(sin^2x+cos^2x)+2sinxcosx)/cos^2x=(1-3cos^2x)/cos^2x

Since color(blue)(sin^2x+cos^2x=1), you have:

cancel(color(blue)1)+2sinxcosx=cancel(color(blue)1)-3cos^2x and cosx!=0

2sinxcosx+3cos^2x=0 and cosx!=0

cosx(2sinx+3cosx)=0 and cosx!=0

2sinx+3cosx=0

then you can divide by cos x to obtain:

2color(red)(sinx/cosx)+3cosx/cosx=0

2color(red)tanx=-3

tanx=-3/2

x=arctan(-3/2)+kpi

Oct 11, 2016

-56^@31 + k180^@

Explanation:

Use trig identity: (tan^2 x + 1) = sec^2 x
(tan x + 1)^2 = tan^2 x + 1 + 2tan x = sec^2 x - 3
sec^2 x + 2tan x = sec^2 x - 3
Cancel sec^2 x from both sides, we get
2tan x = -3
tan x = - 1.5
Calculator gives
x = - 56^@31.
General answers:
x = - 56^@31 + k180^@
Check by calculator.
x = - 56.31 --> tan x = -1. 5 --> (tan x + 1)^2 = 0.25
sec^2 x = 1/(cos^2 x) = 1/0.30 = 3.25.
sec^2 x - 3 = 3.25 - 3 = 0.25. OK