How do you solve the differential dy/dx=4x+(4x)/sqrt(16-x^2)?

1 Answer
Sep 27, 2017

y = 2x^2 -4sqrt(16-x^2) + C

Explanation:

Separate variables:

dy = (4x + (4x)/sqrt(16-x^2)) dx

Integrate. On the right side, a u substitution can be helpful if the integral cannot be "eyeballed":

int dy = int (4x + (4x)/sqrt(16-x^2)) dx
int dy = int 4x dx + int (4x)/sqrt(16-x^2) dx
int dy = int 4x dx + int (4x)(16 - x^2)^(-1/2) dx

If we let u = 16 - x^2, then du = -2x dx, or conversely:

2x dx = -du => 4x dx = -2 du

Substituting and integrating:

int dy = int 4x dx + int u^(-1/2) (-2du)
int dy = int 4x dx -2int u^(-1/2) du
y = 2x^2 - 4u^(1/2) + C

Lastly, substitute back:

y = 2x^2 - 4(16-x^2)^(1/2) + C = 2x^2 -4sqrt(16-x^2) + C