Separate variables:
dy = (4x + (4x)/sqrt(16-x^2)) dx
Integrate. On the right side, a u substitution can be helpful if the integral cannot be "eyeballed":
int dy = int (4x + (4x)/sqrt(16-x^2)) dx
int dy = int 4x dx + int (4x)/sqrt(16-x^2) dx
int dy = int 4x dx + int (4x)(16 - x^2)^(-1/2) dx
If we let u = 16 - x^2, then du = -2x dx, or conversely:
2x dx = -du => 4x dx = -2 du
Substituting and integrating:
int dy = int 4x dx + int u^(-1/2) (-2du)
int dy = int 4x dx -2int u^(-1/2) du
y = 2x^2 - 4u^(1/2) + C
Lastly, substitute back:
y = 2x^2 - 4(16-x^2)^(1/2) + C = 2x^2 -4sqrt(16-x^2) + C