How do you solve the equation 1 + sin(x) = cos(x)? 1 + sin(x) = cos(x)?

1 Answer
Apr 17, 2015

Use the identity: color(blue)(sin x - cos x = (sqrt2)*sin (x - pi/4)

f(x) = 1 + sin x - cos x = 0
(sqrt2)*sin (x - pi/4) = -1
sin (x - pi/4) = -1/sqrt2
There are 2 arcs that have the same sin value (-1/(sqrt2))

x_1 - pi/4 = pi + pi/4 = (5pi)/4 -> x_1 = (5pi)/4 + pi/4 = (6pi)/4 = (3pi)/2

x_2 - pi/4 = 2pi - pi/4 = (7pi)/4 -> x_2 = (7pi)/4 + pi/4 = (8pi)/4 = 2pi.

Check the 2 answers: (3pi)/2 and 2pi:

x = (3pi)/2 -> sin x = -1

and cos x = 0 -> f(x) = 1 - 1 + 0 = 0. Correct

x = 2pi -> sin x = 0,

and cos x = 1 -> f(x) = 1 + 0 - 1 = 0. Correct