How do you solve the equation log_2(12b-21)-log_2(b^2-3)=2?

1 Answer
Jan 10, 2017

We do not have a solution to log_2 (12b-21)-log_2 (b^2-3)=2

Explanation:

log_2 (12b-21)-log_2 (b^2-3)=2

hArrlog_2 ((12b-21)/(b^2-3))=2

or log_2 ((12b-21)/(b^2-3))=log_2 2^2

or (12b-21)/(b^2-3)=4

or 12b-21=4b^2-12

or 4b^2-12-12b+21=0

or 4b^2-12b+9=0

or (2b)^2-2xx2bxx3+3^2=0

or (2b-3)^2=0

i.e. 2b-3=0 or b=3/2

However, if b=3/2, log_2 (12b-21) or log_2 (b^2-3) do not exist as 12b-21 and b^2-3 are negative.

Hence, we do not have a solution to log_2 (12b-21)-log_2 (b^2-3)=2