How do you solve the equation log_2n=1/4log_2 16+1/2log_2 49?

1 Answer
Oct 30, 2016

n=14

Explanation:

log_2 n =1/4 log_2 16 + 1/2 log_2 49

First use the log rule alogx=logx^a.

log_2 n =log_2 16^(1/4)+ log_2 49^(1/2)

16^(1/4)=root(4)16=2 and 49^(1/2)=sqrt49=7

log_2 n = log_2 2 +log_2 7

Use the log rule logx +logy = logxy to condense the log.

log_2 n = log_2 (2 *7)

log_2 n = log_2 14

n=14