How do you solve the equation log_3(x+5)-log_3(x-7)=2log3(x+5)log3(x7)=2?

1 Answer
Feb 17, 2015

You can use the following facts:

log_aM-log_aN=log(M/N)logaMlogaN=log(MN) and:

log_ab=x => a^x=blogab=xax=b

So you get:

log_3(x+5)-log_3(x-7)=2log3(x+5)log3(x7)=2
log_3((x+5)/(x-7))=2log3(x+5x7)=2
(x+5)/(x-7)=3^2x+5x7=32
x+5=9(x-7)x+5=9(x7)
x-9x=-63-5x9x=635
-8x=-688x=68
x=68/8=17/2x=688=172