How do you solve the equation log_6(a^2+2)+log_6 2=2?

2 Answers
Oct 19, 2016

Use the rule log_a(n) + log_a(m) = log_a(n xx m) to start the simplification process.

log_6(2(a^2 + 2)) = 2

Convert into exponential form using the rule log_a(n) = b -> a^b = n

2a^2 + 4 = 6^2

2a^2 + 4 = 36

2a^2 - 32 = 0

2(a^2 - 16) = 0

(a + 4)(a - 4) = 0

a = 4 and -4

Hopefully this helps!

Oct 19, 2016

a=sqrt16=+-4

Explanation:

log_6(a^2+2)+log_6(2)=2

using color(red)(log_n(X)+log_n(Y)=log_n(XY))

log_6(2(a^2+2))=2

using the definition of logarithms

color(red)(log_x(y)=z=>x^z=y

we have

6^2=2(a^2+2)

solving:

2a^2+4=36

2a^2=32

a^2=16

a=sqrt16=+-4