How do you solve the equation sqrt3sectheta+2=0 for -pi<=theta<=3pi?

1 Answer
Dec 21, 2016

(2pi)/3, (4pi)/3, (8pi)/3, (10pi)/3

Explanation:

sqrt3.sec t + 2 = 0.
sqrt3/(cos t) = - 2
sqrt3 = - 2cos t
cos t = - sqrt3/2

Trig table and unit circle -->
a. For interval (-pi, pi) --> cos t = -sqrt3/2 --> arc t = +- (2pi)/3
--> 2 solution arcs --> t = (2pi)/3 and t = (4pi)/3 (co-terminal)
b. For interval (-pi, pi + 2pi) or interval (-pi, 3pi),
add 2 solution arcs -->
t = (2pi)/3 + 2pi = (8pi)/3 and t = (4pi)/3 + 2pi = (10pi)/3

Answers for (-pi, 3pi):
(2pi)/3, (4pi)/3, (8pi)/3, (10pi)/3)