How do you solve the following system: 3x + 4y = 11 , 7x+15y=32 3x+4y=11,7x+15y=32?

1 Answer
Nov 21, 2016

y = 19/17y=1917 and x = 37/17x=3717

Explanation:

Step 1) Solve the first equation for xxL

3x + 4y - 4y = 11 - 4y3x+4y4y=114y

3x + 0 = 11 - 4y3x+0=114y

3x = 11- 4y3x=114y

(3x)/3 = (11 - 4y)/33x3=114y3

1x = (11 - 4y)/31x=114y3

x = 11/3 - (4y)/3x=1134y3

Step 2) Substitute 11/3 - (4y)/31134y3 for xx in the second equation and solve for yy:

7*(11/3 - (4y)/3) + 15y = 327(1134y3)+15y=32

77/3 - (28y)/3 + 15y = 3277328y3+15y=32

77/3 - 77/3 - (28y)/3 + (3/3)*15y = 32 - 77/377377328y3+(33)15y=32773

(-28y)/3 + (45y)/3 = (3/3)*32 - 77/328y3+45y3=(33)32773

(17y)/3 = 96/3 - 77/317y3=963773

(17y)/3 = 19/317y3=193

(3/17)(17y)/3 = (19/3)(3/17)(317)17y3=(193)(317)

y = 19/17y=1917

Step 3) Substitute 22/172217 for yy in the solution to the first equation to calculate xx:

x = 11/3 - (4/3)(19/17)x=113(43)(1917)

x = 11/3 - 76/51x=1137651

x = (17/17)(11/3) - 76/51x=(1717)(113)7651

x = 187/51 - 76/51x=187517651

x = 111/51x=11151

x = (3/3)(37/17)x=(33)(3717)

x = 37/17x=3717