Step 1) Solve the first equation for xxL
3x + 4y - 4y = 11 - 4y3x+4y−4y=11−4y
3x + 0 = 11 - 4y3x+0=11−4y
3x = 11- 4y3x=11−4y
(3x)/3 = (11 - 4y)/33x3=11−4y3
1x = (11 - 4y)/31x=11−4y3
x = 11/3 - (4y)/3x=113−4y3
Step 2) Substitute 11/3 - (4y)/3113−4y3 for xx in the second equation and solve for yy:
7*(11/3 - (4y)/3) + 15y = 327⋅(113−4y3)+15y=32
77/3 - (28y)/3 + 15y = 32773−28y3+15y=32
77/3 - 77/3 - (28y)/3 + (3/3)*15y = 32 - 77/3773−773−28y3+(33)⋅15y=32−773
(-28y)/3 + (45y)/3 = (3/3)*32 - 77/3−28y3+45y3=(33)⋅32−773
(17y)/3 = 96/3 - 77/317y3=963−773
(17y)/3 = 19/317y3=193
(3/17)(17y)/3 = (19/3)(3/17)(317)17y3=(193)(317)
y = 19/17y=1917
Step 3) Substitute 22/172217 for yy in the solution to the first equation to calculate xx:
x = 11/3 - (4/3)(19/17)x=113−(43)(1917)
x = 11/3 - 76/51x=113−7651
x = (17/17)(11/3) - 76/51x=(1717)(113)−7651
x = 187/51 - 76/51x=18751−7651
x = 111/51x=11151
x = (3/3)(37/17)x=(33)(3717)
x = 37/17x=3717