How do you solve the following system: 5x + 8y = -2, 4x + 7y = 6x?

1 Answer
Aug 5, 2017

x = - frac(14)(39) and y = - frac(4)(39)

Explanation:

We have: 5 x + 8 y = - 2 and 4 x + 7 y = 6 x

Let's solve both equations for y:

Rightarrow 8 y = - 5 x - 2 and 7 y = 6 x - 4 x

Rightarrow y = frac(- 5 x - 2)(8) and y = frac(2 x)(7)

Then, let's set the two expressions for y equal to each other:

Rightarrow frac(- 5 x - 2)(8) = frac(2 x)(7)

Rightarrow 7 times (- 5 x - 2) = 8 times 2 x

Rightarrow - 35 x - 14 = 4 x

Rightarrow - 35 x - 4 x - 14 = 0

Rightarrow - 39 x - 14 = 0

Rightarrow - 39 x = 14

therefore x = - frac(14)(39)

Now that we have a value of x, let's find y using one of the expressions:

Rightarrow y = frac(2 x)(7)

Rightarrow y = frac(2 times - frac(14)(39))(7)

Rightarrow y = frac(- frac(28)(39))(7)

Rightarrow y = frac(- frac(28)(39))(frac(7)(1))

Rightarrow y = - frac(28)(39) times frac(1)(7)

Rightarrow y = - frac(28 times 1)(39 times 7)

Rightarrow y = - frac(28)(273)

therefore y = - frac(4)(39)

Therefore, the solutions to the equation are x = - frac(14)(39) and y = - frac(4)(39).