How do you solve the identity cos 2x + cos 4x = 0cos2x+cos4x=0?

3 Answers
Aug 22, 2015

Solve f(x) = cos 2x + cos 4x = 0

Explanation:

Apply the trig identity: cos 4x = 2cos^2 2x - 1.cos4x=2cos22x1.
f(x) = cos 2x + 2cos^2 2x - 1 = 0f(x)=cos2x+2cos22x1=0
Call cos 2x = t, we have to solve the quadratic equation:

2t^2 + t - 1 = 0

Since (a - b + c) = 0, the shortcut gives: t = - 1t=1 and t = -c/a = 1/2t=ca=12

a. cos 2x = t = -1 cos2x=t=1--> 2x = +- pi2x=±π --> x = +- pi/2x=±π2
b. cos 2x = t = 1/2cos2x=t=12 --> 2x = +- pi/32x=±π3 --> x = +- pi/6x=±π6
Within interval (-pi, pi),(π,π), there are 6 answers:
+- pi/2 ; +- pi/3 and +- pi/6±π2;±π3and±π6
Check by calculator:
x = pi/2x=π2 -> cos 2x = cos pi = -1 ; cos 4x = cos 2pi = 1 -->
--> f(x) = -1 + 1 = 0. OK
x = pi/6x=π6 --> cos 2x = cos pi/3 = 1/2cos2x=cosπ3=12 ; cos 4x = cos (2pi)/3 = -1/2cos4x=cos(2π)3=12
--> f(x) = 1/2 - 1/2 = 0.f(x)=1212=0. OK
x = pi/3x=π3 --> cos 2x = cos (2pi)/3 = 1/2 ; cos 4x = cos (4pi)/3 = - 1/2
f(x) = 1/2 - 1/2 = 0. OK

Aug 22, 2015

color(blue)(x= pi/6+npi)color(white)("XX")orcolor(white)("XX")color(blue)(x = (5pi)/6+npi)color(white)("XX")orcolor(white)("XX")color(blue)(x =pi/2+npi)x=π6+nπXXorXXx=5π6+nπXXorXXx=π2+nπ
color(white)("XXXXXXXX")AA n in ZZ

Explanation:

Let theta = 2x

cos(2x)+cos(4x)=0
color(white)("XXXX")becomes
cos(theta)+cos(2theta) = 0

By double angle formula
color(white)("XXXX")cos(2theta) = 2cos^2(theta)-1

So
cos(theta)+(2cos^2(theta) -1) = 0

Rearranging
2cos^2(theta)+cos(theta)-1 = 0

Factoring
(2cos(theta)-1)(cos(theta)+1) = 0

rArrcolor(red)(cos(theta) = 1/2)color(white)("XXXXXXXXXXXX")orcolor(white)("XXX")color(blue)(cos(theta)=-1)

if restricted to theta in [0,2pi]
color(red)(theta = pi/3 or theta=(5pi)/3)color(white)("XXXXXXXXXXX")orcolor(white)("XXXX")color(blue)(theta=pi)

or in general (with n in ZZ)
color(red)(theta = pi/3+n2pi or theta=(5pi)/3+n2pi)color(white)("XXX")orcolor(white)("XXXX")color(blue)(theta=pi+2pi)

Since theta = 2x
x= pi/6+npi or x = (5pi)/6+npicolor(white)("XXXXX")orcolor(white)("XXXX")x =pi/2+npi

Apr 17, 2017

pi/2 + 2kpi
(3pi)/2 + 2kpi
pi/6 + (2kpi)/3
pi/2 + (2kpi/3)

Explanation:

Apply trig identity:
cos a + cos b = 2cos ((a + b)/2)cos ((a - b)/2)
In this case:
cos 2x + cos 4x = 2cos 3x.cos x = 0
Either cos x or cos 3x should be zero.

a. cos x = 0 --> Unit circle gives 2 solutions:
x = pi/2 + 2kpi, and x = (3pi)/2 + 2kpi
b/ cos 3x = 0 --> unit circle gives 2 solutions:
3x = pi/2 + 2kpi --> x = pi/6 + (2kpi)/3
3x = (3pi/2) + 2kpi --> x = pi/2 + (2kpi)/3