How do you solve the inequality 2x^2+25x+63<=0?

1 Answer
Feb 1, 2017

The answer is x in [-9, -7/2]

Explanation:

Let's factorise the LHS

2x^2+25x+63<=0

(2x+7)(x+9)<=0

Let f(x)=(2x+7)(x+9)

We can build the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-9color(white)(aaaa)-7/2color(white)(aaaa)-oo

color(white)(aaaa)x+9color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)2x+7color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)<=0, when x in [-9, -7/2]