Let`s rewrite the inequality
x^2+6x-7>=0
We factorise
(x-1)(x+7)>=0
Let f(x)=(x-1)(x+7)
The domain of f(x) is D_f(x)=RR
We do a sign chart
color(white)(aaaa)xcolor(white)(aaaaa)-oocolor(white)(aaaaa)-7color(white)(aaaaa)1color(white)(aaaaa)+oo
color(white)(aaaa)x+7color(white)(aaaaaa)-color(white)(aaaaa)+color(white)(aaaaa)+
color(white)(aaaa)x-1color(white)(aaaaaa)-color(white)(aaaaa)-color(white)(aaaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aaaaa)-color(white)(aaaaa)+
Therefore,
f(x)>=0, when x in ] -oo,-7] uu [ 1, +oo[