How do you solve the triangle given C=103,a=38,b=34?

1 Answer
Mar 25, 2018

c=0,9109,ˆA=23.65,ˆB=53.35

Area of Triangle At=(12)absinC=0.137sq units

Explanation:

![http://www.dummies.com/education/math/trigonometry/laws-of-sines-and-cosines/](useruploads.socratic.org)

ˆC=103,a=38,b=34, To solve the triangle

Applying Law of cosines,

c=a2+b22abcosC

c=(38)2+(34)2(2(38)(34)cos103)

c=0.9109

Applying Law of sines,

sinA38=sinB34=sin1030.9109

sinA=(38)sin1030.9109=0.4011

ˆA=sin10.4011=23.65

Similarly, sinB=(34)sin1030.9109=0.8023

ˆA=sin10.8023=53.35

Area of Triangle At=(12)absinC=(12)(38)(34)sin103=0.137sq units