Consider the Diagram:
I would use Trigonometry to find the sides of triangle AOC:
r/(AC)=tan(30^@)rAC=tan(30∘)
AC=3/tan(30^@)=5.2AC=3tan(30∘)=5.2
and:
r=OCsin(30^@)r=OCsin(30∘)
OC=3/sin(30^@)=6OC=3sin(30∘)=6
the area of the triangle AOC will be:
"Area1"=(AC*r)/2=7.8 "u.a."Area1=AC⋅r2=7.8u.a.
we can multiply by 22 to get the area of the two tringles:
"Area Triangles"=2*"Area1"=2*7.8=15.6"u.a."Area Triangles=2⋅Area1=2⋅7.8=15.6u.a.
We can subtract from this area the area of the circular sector AOB to get the violet area:
"Area Aector"=1/2r^2*"angle in radians"=1/2*3^2*2/3pi=9.4"u.a."Area Aector=12r2⋅angle in radians=12⋅32⋅23π=9.4u.a.
So the final area should be:
"Area shaded"=15.6-9.4=6.2"u.a."Area shaded=15.6−9.4=6.2u.a.