First, scale the equations such that one of the variables for both equations will have the same coefficient (the sign need not be the same).
[1] 5m + 3n = 1.5[1]5m+3n=1.5
[2] -8m - 2n = 20[2]−8m−2n=20
For the above equations, let us multiply [1][1] by 22 and [2][2] by 33
[1] => 2(5m + 3n = 1.5)[1]⇒2(5m+3n=1.5)
[1] => 10m + 6n = 3[1]⇒10m+6n=3
[2] => 3(-8m -2n = 20)[2]⇒3(−8m−2n=20)
[2] => -24m -6n = 60[2]⇒−24m−6n=60
Now, let's add equations [1][1] and [2][2]
[1] => 10m + 6n = 3[1]⇒10m+6n=3
[2] => -24m - 6n = 60[2]⇒−24m−6n=60
[1] + [2] => -14m = 60[1]+[2]⇒−14m=60
=> m = -60/14⇒m=−6014
=> m = -30/7⇒m=−307
To get nn, simply substitute the value of mm to either [1][1] or [2][2] and solve for n
[1] => 5m + 3n = 1.5[1]⇒5m+3n=1.5
[1] => 10(-30/7) + 6n = 3[1]⇒10(−307)+6n=3
[1] => -300/7 + 6n = 3[1]⇒−3007+6n=3
[1] => 6n = 3 + 300/7[1]⇒6n=3+3007
[1] => 6n = (21 + 300) /7[1]⇒6n=21+3007
[1] => 6n = 321 / 7[1]⇒6n=3217
[1] => n = 321 /(7 * 6)[1]⇒n=3217⋅6
[1] => n = (107 * 3) / (7 * 2 * 3)[1]⇒n=107⋅37⋅2⋅3
[1] => n = 107 / 14[1]⇒n=10714