How do you solve using elimination of 5m + 3n = 1.55m+3n=1.5 and -8m - 2n = 208m2n=20?

1 Answer
Oct 31, 2015

First, scale the equations such that one of the variables for both equations will have the same coefficient (the sign need not be the same).

[1] 5m + 3n = 1.5[1]5m+3n=1.5
[2] -8m - 2n = 20[2]8m2n=20

For the above equations, let us multiply [1][1] by 22 and [2][2] by 33

[1] => 2(5m + 3n = 1.5)[1]2(5m+3n=1.5)
[1] => 10m + 6n = 3[1]10m+6n=3

[2] => 3(-8m -2n = 20)[2]3(8m2n=20)
[2] => -24m -6n = 60[2]24m6n=60

Now, let's add equations [1][1] and [2][2]

[1] => 10m + 6n = 3[1]10m+6n=3
[2] => -24m - 6n = 60[2]24m6n=60

[1] + [2] => -14m = 60[1]+[2]14m=60
=> m = -60/14m=6014

=> m = -30/7m=307

To get nn, simply substitute the value of mm to either [1][1] or [2][2] and solve for n

[1] => 5m + 3n = 1.5[1]5m+3n=1.5

[1] => 10(-30/7) + 6n = 3[1]10(307)+6n=3

[1] => -300/7 + 6n = 3[1]3007+6n=3

[1] => 6n = 3 + 300/7[1]6n=3+3007

[1] => 6n = (21 + 300) /7[1]6n=21+3007

[1] => 6n = 321 / 7[1]6n=3217

[1] => n = 321 /(7 * 6)[1]n=32176

[1] => n = (107 * 3) / (7 * 2 * 3)[1]n=1073723

[1] => n = 107 / 14[1]n=10714