w^2-2 <=0 or (w+sqrt2)(w-sqrt2) <= 0 w2−2≤0or(w+√2)(w−√2)≤0 . Critical points
are w= sqrt2 and w = -sqrt2 w=√2andw=−√2 at w = +- sqrt2 ; w^2-2=0w=±√2;w2−2=0
Sign chart:
When w < -sqrt2w<−√2 sign of (w+sqrt2)(w-sqrt2)(w+√2)(w−√2) is (-)*(-) =+ ; >0 (−)⋅(−)=+;>0
When -sqrt2 < w < sqrt2−√2<w<√2 sign of (w+sqrt2)(w-sqrt2)(w+√2)(w−√2)
is (+)*(-) =- ; < 0 (+)⋅(−)=−;<0
When w > sqrt2w>√2 sign of (w+sqrt2)(w-sqrt2)(w+√2)(w−√2) is (+)*(+) =+ ; >0 (+)⋅(+)=+;>0
Solution: -sqrt2 <= w <= sqrt2 or [-sqrt2,sqrt2]−√2≤w≤√2or[−√2,√2]
graph{x^2-2 [-12.66, 12.65, -6.33, 6.33]} [Ans]