How do you solve w^2-2<=0w220 using a sign chart?

1 Answer
Sep 26, 2017

Solution: -sqrt2 <= w <= sqrt2 or [-sqrt2,sqrt2]2w2or[2,2]

Explanation:

w^2-2 <=0 or (w+sqrt2)(w-sqrt2) <= 0 w220or(w+2)(w2)0 . Critical points

are w= sqrt2 and w = -sqrt2 w=2andw=2 at w = +- sqrt2 ; w^2-2=0w=±2;w22=0

Sign chart:

When w < -sqrt2w<2 sign of (w+sqrt2)(w-sqrt2)(w+2)(w2) is (-)*(-) =+ ; >0 ()()=+;>0

When -sqrt2 < w < sqrt22<w<2 sign of (w+sqrt2)(w-sqrt2)(w+2)(w2)

is (+)*(-) =- ; < 0 (+)()=;<0

When w > sqrt2w>2 sign of (w+sqrt2)(w-sqrt2)(w+2)(w2) is (+)*(+) =+ ; >0 (+)(+)=+;>0

Solution: -sqrt2 <= w <= sqrt2 or [-sqrt2,sqrt2]2w2or[2,2]

graph{x^2-2 [-12.66, 12.65, -6.33, 6.33]} [Ans]