How do you solve (x-1)(3x-4)>=0?

3 Answers
Jul 17, 2018

The solution is x in (-oo, 1] uu[4/3,+oo)

Explanation:

The inequality is

(x-1)(3x-4)>=0

Let f(x)=(x-1)(3x-4)

Let's build a sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaaa)1color(white)(aaaaaaaa)4/3color(white)(aaaaa)+oo

color(white)(aaaa)x-1color(white)(aaaaa)-color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaaaa)+

color(white)(aaaa)3x-4color(white)(aaaa)-color(white)(aaaa)#color(white)(aaaaa)-#color(white)(aa)0color(white)(aaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)+color(white)(aaaa)0color(white)(aaaa)-color(white)(aa)0color(white)(aaa)+

Therefore,

f(x)>=0,when x in (-oo, 1] uu[4/3,+oo)

graph{(x-1)(3x-4) [-1.453, 3.413, -0.497, 1.936]}

x\in(-\infty, 1]\cup[4/3, \infty)

Explanation:

Given inequality

(x-1)(3x-4)\ge0

setting x-1=0\implies x=1

setting 3x-4=0\implies x=4/3

Specify the points x=1 & x=4/3 on the number line & divide it into positive & negative regions alternatively from right most value which gives us

x\in(-\infty, 1]\cup[4/3, \infty)

Jul 17, 2018

x in(-oo,1]uu[4/3,oo)

Explanation:

"find the zeros of left side by equating to zero"

(x-1)(3x-4)=0

x-1=0rArrx=1

3x-4=0rArrx=4/3

(x-1)(3x-4)=3x^2-7x+4larrcolor(blue)"in standard form"

"Since "a>0" then minimum turning point "uuu

(x-1)(3x-4)>=0" then"

x<=1" or "x>=4/3

x in(-oo,1]uu[4/3,oo)
graph{3x^2-7x+4 [-5, 5, -2.5, 2.5]}