How do you solve x^2+2x>0?

1 Answer
Jun 29, 2017

Solution: x < -2 or x>0 . In interval notation:

(-oo, -2) uu (0 , oo) .

Explanation:

x^2+2x >0 or x(x+2) > 0 . Critical points are

x=0 :.x=0 or x+2 =0 :.x =-2

Sign Change for x(x+2) :

When x < -2 ; (-)(-) = + :. x(x+2) > 0

When -2< x <0 ; (-)(+) = - :. x(x+2) < 0

When x >0 ; (+)(+) = + :. x(x+2) > 0

Solution: x < -2 or x>0 .In interval notation:

(-oo, -2) uu (0 , oo) . The graph also confirms.

graph{x^2+2x [-10, 10, -5, 5]}