How do you solve x^2-3x-20=0 by completing the square?
1 Answer
Jan 8, 2017
Explanation:
The difference of squares identity can be written:
a^2-b^2 = (a-b)(a+b)
Use this with
0 = 4(x^2-3x-20)
color(white)(0) = 4x^2-12x-80
color(white)(0) = (2x)^2-2(2x)(3)+9-89
color(white)(0) = (2x-3)^2-(sqrt(89))^2
color(white)(0) = ((2x-3)-sqrt(89))((2x-3)+sqrt(89))
color(white)(0) = (2x-3-sqrt(89))(2x-3+sqrt(89))
Hence:
x = 1/2(3+-sqrt(89)) = 3/2+-sqrt(89)/2