How do you solve #x^2-4.7x=-2.8# by completing the square?
2 Answers
Explanation:
or
check:
or
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
Use this with
Given:
#x^2-4.7x=-2.8#
Add
#x^2-4.7x+2.8 = 0#
Multiply through by
#0 = 400(x^2-4.7x+2.8)#
#color(white)(0) = 400x^2-1880x+1120#
#color(white)(0) = (20x)^2-2(20x)(47)+47^2-1089#
#color(white)(0) = (20x-47)^2-33^2#
#color(white)(0) = ((20x-47)-33)((20x-47)+33)#
#color(white)(0) = (20x-80)(20x-14)#
#color(white)(0) = 40(x-4)(10x-7)#
So:
#x=4" "# or#" "x = 7/10 = 0.7#