How do you solve x^2-4x<-3 using a sign chart?

1 Answer
Dec 13, 2016

The answer is x in ] 1,3 [

Explanation:

Rewrite the equation as, x^2-4x+3<0

Let f(x)=x^2-4x+3=(x-1)(x-3)

The domain of f(x) is D_f(x)=RR

Now, we can do our sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)+1color(white)(aaaa)+3color(white)(aaaa)+oo

color(white)(aaaa)x-1color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-3color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

So,

f(x)<0 when x in ] 1,3 [